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This paper demonstrates a technique for locating the optimal control surface layout of
an aeroservoelastic Common Research Model wingbox, in the context of maneuver load al-
leviation and active flutter suppression. The combinatorial actuator layout design is solved
using ideas borrowed from topology optimization, where the effectiveness of a given control
surface is tied to a layout design variable, which varies from zero (the actuator is removed)
to one (the actuator is retained). These layout design variables are optimized concurrently
with a large number of structural wingbox sizing variables and control surface actuation
variables, in order to minimize the sum of structural weight and actuator weight. Results
are presented that demonstrate interdependencies between structural sizing patterns and
optimal control surface layouts, for both static and dynamic aeroelastic physics.

I. Introduction

Articulated control surfaces distributed along the trailing edge of a highly-flexible wing structure can
be utilized to improve overall flight performance in several ways: cruise drag reduction, maneuver load
alleviation, gust rejection, active flutter suppression, etc. Due to the coupled nature of the aeroelastic physics,
control surface actuation will have a strong impact on the effective mass, stiffness, and damping of the wing,
and design optimization/tailoring studies should reflect this interdependency. As such, several papers have
demonstrated optimization of structural wing properties and commanded control surface rotations (quasi-
steady and/or dynamic actuation), within a single design loop: see for example Refs. 1 - 4.

Fewer papers exist that optimize (in addition to its commanded actuation) control surface placement and
layout, owing to the complexities of this design space. Optimal actuator placement is a well-studied topic for
nonaerospace structures (see the review by Padula5) and for aeroelastic structures with embedded actuators,
such as piezoelectric patches,6,7 which are easily integrated into a structural wing model. For hinged control
surface applications, optimal placement studies are given by Johnson et al.8 and Weisshaar and Nam9

using gradient-based optimization, and Viswamurthy and Ganguli10 and Kolonay and Kobayashi11 using
nongradient-based optimization. The former design technique is generally preferred to the latter, due to its
ability to handle large numbers of design variables, but will also struggle with local minima.

Rather than explicitly utilize control surface location design variables, as done in the literature cited
above, the current work poses the problem as a combinatorial one: a bank of control surfaces are distributed
along the trailing edge of a wingbox, and the optimizer must decide which to retain and which to discard.
These problems are commonly solved5 using nongradient-based optimizers, but this is not an option here,
as a very large number of structural wingbox design variables are to be handled simultaneously with the
control surface variables. Alternatively, a topology design variable may be attached to each control surface
actuator, ranging from zero (the control surface actuator is entirely removed, leaving behind only a rigid
outer mold line) to one (the control surface is fully utilized). A combination of implicit and explicit penalties
on intermediate values may be used during the optimization process to push each topology variable to its
extreme (zero or one) as the process converges.

In the current work, structural sizing design variables, control surface actuation/scheduling design vari-
ables, and control surface layout/topology design variables, are all optimized simultaneously for the Common
Research Model (CRM), a generic transport configuration. This is done within the context of maneuver load
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alleviation (MLA) and active flutter suppression (AFS). Different classes of design variables are phased into
the optimization results incrementally, in order to track changes in wing performance metrics and their
underlying aeroelastic physics, as the design space is expanded.

II. Control Surface Actuation and Topology Design Variables

The ideas used here for control surface layout design are taken from the topology optimization literature,
namely the SIMP method (Solid Isotropic Material with Penalization).12 The method is predicated on
a nonlinear power law relationship between the topological design variable of an element and its elastic
modulus, which makes the ratio of stiffness-to-mass less attractive for intermediate topologies (i.e., between
zero and one). A similar concept is found to be useful here, where the rotation of a given control surface is
computed as:

θi = θi · (xi)
p (1)

where θi is the rotation of the ith control surface as decided upon by the optimizer, xi is the topological
design variable, p is an integer, and θi is the control surface rotation actually passed to the aeroelastic solver.
The mass of the ith actuator is computed as:

mi = m0,i · xi (2)

where m0,i is the set actuator mass, and mi is the mass actually utilized for aeroelastic analysis.
If a given xi is set (by the optimizer) to zero, clearly the optimizer’s choice for the ith control surface

actuation becomes immaterial, as the actuator has been removed and the control surface rigidized. If xi is
set to one, the desired control surface actuation is passed to the aeroelastic solver as-is. Intermediate values
(e.g., xi = 0.5) may in general be attractive to the optimizer, as they present a compromise between reducing
total weight (Eq. 2) and still allowing for some contribution to maneuver load alleviation (for example) from
the ith control surface. Values of p greater than one in Eq. 1 diminish this compromise, just as in the SIMP
method, pushing most xi variables to the desired extremes of zero or one during the optimization process.

III. Transport Configuration Test Case

All of the work in this paper is conducted on a conceptual high aspect ratio Common Research Model
(CRM). The 1g outer mold line for a lower aspect ratio (AR = 9) CRM is described in Ref. 13, and a jig
shape CRM wingbox subsequently developed by Kenway et al.14 A span extension of this model increased
the aspect ratio from 9 to 13.5; the latter configuration (shown in Fig. 1) is used here. This transonic
transport has a wing span of 72 m, a mean aerodynamic chord of 6.3 m, a taper ratio of 0.25, a sweep
angle of 35◦, and a cruise Mach number of 0.85. The topology of the wingbox in Fig. 1 consists of 58 ribs,
leading and trailing spars, and upper and lower surface skins. All shell members are outfitted with T-shaped
stiffeners, where the flange is bonded to the shell members. The stiffeners are not modeled explicitly, but
instead smeared into the shell stiffness properties.15

An aluminum finite element model of this wingbox is composed of 21,300 triangular finite elements. Non-
modeled secondary weight (of fasteners, etc.) is captured by increasing the structural density by a factor of
1.25. Nodes along the wing centerline are given a symmetric boundary condition; nodes along the wing root
are given a pinned boundary condition.

Finally, twenty articulated control surfaces are distributed along the trailing edge of the wing from root
to tip, also seen in Fig. 1. The mass of each actuator used to drive each control surface, m0,i, is set based
on an initial estimate of the hinge moments encountered during maneuver loading, using a constant mass-
per-hinge-moment value. This actuator mass value ranges from 214.5 kg (root) to 26.3 kg (tip). The mass
of each control surface flap is proportional to the surface area of the wedge, and ranges from 140.4 kg (root)
to 35.4 kg (tip). A hinge spring attached to each control surface is connected back to the trailing spar via
interpolation elements. For static aeroelastic simulations, the hinge spring is sized such that, when the worst-
case hinge moment is applied, the control surface rotates no more than 0.1 rad. For dynamic aeroelasticity,
a different hinge spring stiffness is used: each spring is sized such that the isolated natural frequency of each
control surface is 35 Hz. Both choices are made to effectively remove any passive rotations of each control
surface, but not rigidize to such a degree that numerical difficulties may arise. Inertial properties of each
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Figure 1. Wingbox, outer mold line, and control surfaces of the high aspect ratio CRM.

control surface, and stiffness properties of each hinge spring, are integrated into the shell-based finite element
model of the wingbox, by considering each control surface rotation as an additional degree of freedom.

The paneling scheme used to model steady and unsteady linear aerodynamic loads over the vehicle is
shown in Fig. 2, with a total of 4,150 panels. A finer mesh is used toward the hinge line of the control
surfaces, in order to improve the accuracy of the aeroservoelastic loads generated by deflections. Non-
structural lumped mass distributions are also shown in the figure, to model the fuel (44,800 kg), engine
(11,400 kg), and various unmodeled components in the leading and trailing edges of the wing (5,480 kg).
The total mass of the 20 control surfaces and their actuators is 3,935 kg, and a fixed mass of 63,700 kg
is used to model the remainder of the half-airplane (fuselage, etc.). Typical structural masses (for a single
wingbox) will range during optimization from 15,000 to 20,000 kg. The TOGW for the entire vehicle is then
roughly 300,000 kg.

Figure 2. Aerodynamic paneling (left) and non-structural lumped mass distribution (right).

IV. Maneuver Load Alleviation

Airplane maneuvers are considered to occur slow enough to warrant only static aeroelastic modeling:
dynamic aeroelastic effects are ignored in this section. Maneuver loads are computed with the following
equation:

K −q ·Q 0 0

−P D −Lα −Lδ
0 q · STL 0 0

0 q · STm 0 0

 ·


x

Cp

α

δ

 =


N · Fgrav + Fthrust

Ljig

N ·W
0

 +


QHM

0

0

0

 · θ (3)

The first row of Eq. 3 is the finite element analysis: K is the stiffness matrix, and x is the solution vector,
which includes both structural wingbox deformations and control surface rotations. Forcing functions include
self-weight inertial loading, Fgrav (scaled by the load factor N), thrust loading, Fthrust, from the engine,
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and aerodynamic forces. Aerodynamic forces are written as q ·Q · Cp, where Cp is a vector of differential
pressure coefficients acting on each panel, Q is an interpolation function derived from a finite plate spline
(FPS),16 and q is the dynamic pressure. Commanded quasi steady actuation inputs, θi (from Eq. 1), are
collected in the vector θ. These are applied to the finite element model as hinge moments applied to each
control surface hinge spring, via the matrix QHM .

The second row of Eq. 3 is the aerodynamic analysis, where D is the matrix of aerodynamic influence
coefficients (AIC). This equation is driven by downwash due to angle of attack, Lα · α (where Lα is a
linear operator that converts the scalar angle of attack into a downwash at each panel), elevator deflection,
Lδ · δ, built-in camber/twist of the wing and tail jig shapes, Ljig, and downwash induced by structural wing
deformation. This latter term is written as P · x, where P is a second interpolation function, also derived
from FPS-based methods.

Trim equations are written in the 3rd and 4th rows of Eq. 3: q · SL and q · Sm convert the differential
pressure vector, Cp, into a total aerodynamic lift and aerodynamic pitching moment (about the aircraft
center of gravity). Lift must offset the total weight of the vehicle (N ·W ), and the pitching moment must
be zero.

The second type of load case considered here is an inertial-only load case, with neither aeroelasticity,
trimming mechanisms, nor control surface actuation involved. This is meant to emulate landing loads or
taxi bump loads, with wing deformation simply computed by:

K · x = N · Fgrav (4)

Having solved for the wing deformation in Eqs. 3 or 4, von Mises stresses are computed for each finite
element, including a knock-up (safety) factor. The wingbox in Fig. 1 is broken into patches (one patch
per rib, per rib-delineated skin panel, and per rib-delineated spar section, for 283 total patches), and the
Kreisselmeier-Steinhauser (KS) function17 is used to compress all of the elemental failure function values
within a given patch into a single metric. Next, buckling analyses are run for each stiffened panel in the
upper and lower skins, using a Rayleigh-Ritz method (assumed buckling modes). Both global buckling of a
stiffened panel (bordered by ribs and spars) and local buckling between each stiffener is computed, where
simply-supported boundary conditions are used for both scenarios. As with the stress metrics, each buckling
eigenvalue for a given stiffened panel is compressed into a single KS function.

Five load cases are utilized here, summarized in Table 1. Load cases 1 and 2 are both run at 2.5g, but
case 1 features maneuver load alleviation from the control surfaces (θi in Eq. 1), whereas case 2 does not:
θi is set to 0. Forcing the optimizer to account for load cases that do not benefit from control surface-based
aeroelastic tailoring (albeit at a lower safety factor) prevents overly-large mass reductions and injects a level
of risk-reduction into the design process. A similar open/closed-loop dynamic is used for load cases 3 and
4, at -1g. The final load case 5 is a simple 2g inertial-only landing load, and is not aeroelastically coupled.
Aeroelastic load cases 1-4 are computed with Eq. 3, inertial case 5 is computed with Eq. 4.

Table 1. Summary of static aeroelastic load cases.

Case N Mach Altitude Safety Factor Actuator Status

1 2.5 0.64 0 ft 1.5 closed-loop

2 2.5 0.64 0 ft 1.3 open-loop

3 -1 0.64 0 ft 1.5 closed-loop

4 -1 0.64 0 ft 1.3 open-loop

5 2 - - 1.5 open-loop

A. MLA Optimization Definition

The gradient based optimization problem solved here is given in Table 2. The objective function, M , is
the sum of the structural wingbox weight and the control surface actuator weight (mi). Design variables q
include the thickness of each patch shell (ranging from 3 to 30 mm), the thickness of the stiffeners attached
to each patch (3 to 30 mm), and the height of the stiffeners (30 to 100 mm). Additional design variables
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include the commanded rotation for each control surface (θi) for each closed-loop load case (ranging from
−10◦ to 10◦), as well as the topological/layout variables xi (ranging from 0 to 1).

Table 2. MLA optimization definition.

minimize: M(q)

subject to: qLB ≤ q ≤ qUB
KSσ,i ≤ 1 i = 1, ..., Nσ ·NL
KSµ,i ≤ 1 i = 1, ..., Nµ ·NL
KSt/ts ≤ 1

KSAR ≤ 1∑
(xi − x2i ) ≤ δx

NL is the number of static load cases in Table 1, KSσ are the stress aggregation parameters (Nσ per
load case), and KSµ are the buckling aggregation parameters (Nµ per load case). It is desired that, for a
given design patch, the shell thickness be within 2.5 mm of the stiffener thickness. These constraints are
normalized to 1 for each design patch, and then all aggregated into a single metric, KSt/ts . Similarly, the
aspect ratio of each stiffener should not be greater than 15, which is compressed into a single constraint,
KSAR. The final constraint in Table 2 controls intermediate xi values. For all cases in this paper, the
implicit penalty of the SIMP method is able to mostly push each xi to 0 or 1, and so δx is set to a large value
for the bulk of the optimization. Once the optimizer has converged, δx is dropped to 0, which explicitly
forces each xi to 0 or 1.

Each set of design variables is passed through a linearly-decaying cone-shape filter12 in order to prevent
the difference in stiffness between adjacent patches, or the difference in actuation between adjacent control
surfaces, from being too large. A linear matrix relationship can be built between the unfiltered design
variables (which are directly created by the optimizer), and the filtered design variables (which are used to
construct the aeroelastic model). All gradient-based optimization problems are solved with the Globally-
Convergent Method of Moving Asymptotes tool (GCMMA).18 Design derivatives are analytically computed
via the adjoint method.19

B. MLA Optimization Results

Aeroelastic optimization results are shown here in 4 stages, summarized in the convergence plot of Fig. 3.
The first stage considers only structural design variables (shell thickness, stiffener thickness, and stiffener
height of each patch), with each control surface rotation variable θi held fixed at 0◦ and each control surface
layout variable xi fixed at 1. With active maneuver load alleviation turned off, load cases 1 and 2 (and 3
and 4) become identical, and the cases with the lower safety factor (2 and 4) have no impact on the design
problem. Convergence for this stage of the design process occurs in Fig. 3 between iterations 1 and 30,
starting with an unsized structure, and ending when the difference in objective function between consecutive
iterations is less than 10−5. The mass of the optimal structure, shown in Fig. 4, is 19,189 kg. The actuator
mass (2,262 kg) is constant during the first design phase, as this portion of the system is held fixed.

The second phase of the design process (between iterations 30 and 58 in Fig. 3) adds the control surface
rotation design variables θi to the optimization problem, though each layout variable xi is still fixed at 1
(i.e., the optimizer is forced to use the full set of 20 control surfaces). Commanded rotations are bounded by
±10◦, and are individually optimized for each control surface, and for each closed-loop load case (1 and 3).
This leaves 40 additional θi design variables. The closed-loop load cases have higher safety factors (1.5), but
also benefit from control surface-based load alleviation. Conversely, the open-loop load cases have a lower
safety factor (1.3), but do not benefit from aeroelastic control: as such, the constraints attached to both sets
of load cases (stresses and buckling) will contribute to the design process.

The addition of control surface rotation design variables affords substantial structural mass reductions,
down from 19,189 kg to 13,862 kg, a 27.7% reduction. As before, actuator mass is constant for this portion
of the design process. For a positive load case, the basic trade-off exploited by the optimizer is to use the
control surfaces to alleviate outboard loads (decreased bending moment), which then allows for a reduction
in structural mass without violating stress or buckling constraints. The decreased outboard lift is offset by
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Figure 3. Convergence history of the MLA aeroelastic optimization process.

Figure 4. Optimal wingbox structure without control surface manuever load alleviation.

positive lift generation from the inboard control surfaces, in order to maintain trim without a large increase
in angle of attack. Optimal control surface rotations for both load cases are shown in Fig. 5.

The third phase of the design process (between iterations 58 and 116 in Fig. 3) adds the xi variables,
which allows the optimizer to simultaneously alter the wingbox structural details, the control surface layout,
and the commanded rotations of those control surfaces selected for use. Actuator mass drops during this
phase, from 2,262 kg to 819 kg. As a decrease in actuator mass also decreases the actuator efficacy (Eqs. 1
and 2), the maneuver load alleviation into the wingbox becomes less prominent, and structural mass increases
during this design phase, from 13,862 kg to 14,029 kg. The sum of actuator and structural mass, the objective
function for this problem, does decrease during this design phase, however.

Despite the implicit SIMP-based penalty on intermediate xi variables, the optimizer is unable to push
every layout variable exactly to the extremes of 0 or 1, creating an unrealistic situation where some actua-
tor/control surface pairs “partially” exist. The fourth and final phase of the design process in Fig. 3 enforces
the final constraint in Table 2, by dropping δx to 0. Meeting this constraint forces the optimizer to pay a
small penalty in terms of structural mass (from 14,029 kg to 14,043 kg), though actuator mass decreases
from 819 kg to 812 kg. The optimal control surface layout, and the commanded rotations of those control
surfaces, is shown in Fig. 5, for comparison with the previous result. Given these small shifts in mass values,
it can be inferred that the SIMP method can nearly achieve a 0/1 solution on its own.

The optimizer chooses to retain the furthest 2 inboard control surfaces, two located near midspan, and
three closer to the wingtip. The remaining 13 control surfaces have been rigidized, and their actuator masses
removed. The retention of the inboard actuator is a testament to its role during the aeroelastic optimization
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Figure 5. Optimal control surface rotation design variables during MLA.

process: it is the heaviest actuator (214 kg, versus 26 kg for the outboard actuator), and the optimizer would
otherwise have every incentive to remove it. Control surface rotations for each retained actuator are the
same sign as those seen for the case when the entire bank of control surfaces is active, though much larger in
magnitude. This increase is presumably due to the need for each actuator to provide a greater aerodynamic
force, since there are fewer of them.

The aeroelastic lift and twist distribution for several designs are shown in Fig. 6: the wing designed
with only structural variables, designed with both structural variables and a full bank of control surfaces,
the wing with the optimal actuator layout, and a rigid wing. Discontinuities are shown in these lift plots
at the wing root (2.6 m) and the engine mount location (11.1 m). The large passive deformations of this
swept wing (without control surface maneuver load alleviation) shows substantial outboard lift and twist
reductions relative to the rigid wing, prompting an increase in angle of attack to maintain trim (vehicle angle
of attack is evidenced by the wing root angle in Fig. 6).

Figure 6. Sectional lift coefficient (left) and angle of attack (right) for the three optimal designs, as well as a
rigid wing, during the 2.5g maneuver.

The aeroelastic design with the full bank of active actuators in Fig. 6 is able to further decrease the
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bending moment through an explicit lift reduction of the outboard control surfaces (negative rotations), as
well as positive rotations at the root. These latter motions can help maintain trim (last two rows of Eq. 3)
without increasing the bending moment. The final design in Fig. 6 with the optimal layout of control surfaces
is driven by these same mechanisms, with spanwise undulations in lift resulting from the discontinuous control
surface-based downwash.

Given their large moment arm, it is perhaps surprising that the optimizer does not make use of the control
surfaces at the wingtip. When the optimizer uses all 20 control surfaces, rotations at the tip are very small;
when layout design variables are included, the optimizer removes the 3 outer actuators entirely. This is due
to the torsional flexibility of the high aspect ratio CRM model used here, leading to decreased effectiveness
of the actuators at the wingtip. A positive control surface rotation (trailing edge down) nominally produces
positive lift, but this force is diluted by the nose-down wing twisting. Fig. 7 computes the % change in
root bending moment due to a unit rotation of each control surface. For the flexible data in this figure, the
outboard control surfaces are “reversed”, in the sense that the change in bending moment is opposite the
expected trend. Control surfaces near the wing root (i.e., with the smallest moment arm) actually have the
largest impact on bending moment in Fig. 7, which is due to flexible trimming requirements: inboard lift
generation allows the optimizer to reduce the angle of attack. The rigid wing data in Fig. 7 shows a more
expected trend, with larger bending moment impacts from outboard control surfaces.

Figure 7. % change in 2.5g root bending moment due to a 1◦ control surface rotation: flexible wing (left) and
rigid wing (right).

The optimizer could passively stiffen the wing in such a way to improve the effectiveness of these outboard
control surfaces, but this would evidently result in a heavier system than the solution shown in Fig. 4 and
Fig. 5, where the optimizer simply ignores (and removes) these outboard surfaces in favor of actuators with
a smaller moment arm. The moment arm of a control surface is less of a predictor for MLA-effectiveness in
any case, given the complex aeroelastic trim mechanisms seen in Fig. 7.

C. Dependence of MLA Optimization on the Number of Actuators

As noted above, as the optimizer decreases the number of actuators it must increase the structural weight,
as the reduced levels of MLA require the wingbox to be passively stiffened in order to satisfy stress and
buckling constraints. In Fig. 3, this mass penalty is mild, rising from 13,862 to 14,043 kg, a 1.3% increase
(actuator mass, by contrast, decreases by 64.1 %). This essentially means that MLA with 20 control surfaces
is only mildly better than MLA with 7 control surfaces. To further understand this trade-off, an additional
constraint is added to Table 2, which stipulates that the number of control surfaces be less than some
threshold. The shift in the optimal mass details and the optimal control surface layout, as a function of this
threshold, is shown in Fig. 8. This figure does not consider more than 7 control surfaces, since this is the
number naturally selected by the optimizer in Fig. 3.

It can be seen that decreasing the required number of actuators from 7 to 3 leaves the objective function
(the sum of actuator and wingbox structural mass) largely unchanged, with a very small penalty. Actuator
mass decreases when moving from 7 to 3, of course, but is nearly offset by the growing structural mass
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penalty. Three control surfaces is the fewest number with which the optimizer can still practice the basic
mechanism outlined above: outboard load alleviation (from a single control surface at midspan), offset by
positive load generation at the root to maintain trim. Once the optimizer is forced to use 2 or fewer control
surfaces, this mechanism is destroyed: penalties in both structural mass and summed structural-actuator
mass are substantial. For the limiting case of zero actuators, the structural wingbox mass rises to 19,835
kg. This value is higher than the structural mass seen in the first phase of Fig. 3 (19,189 kg), where all of
the actuators are present, but control surface rotations are frozen. The latter case clearly benefits from the
inertial relief of the fully-populated actuator masses, even if those actuators are not being used for MLA.

When forced to choose only a few control surfaces, the optimizer retains those closest to the root in
Fig. 8. This is an unexpected result, but follows from the trends seen in Fig. 7: the bending moment
reductions (and by proxy, overall MLA effectiveness) obtained from inboard lift enhancement (which allows
for a reduction in overall angle of attack), are superior to using outboard load alleviation. This is likely to
be a configuration-dependent result, in the sense that a lower aspect ratio wing, with lower bending and
torsional flexibility, would likely find outboard control surfaces more effective and more attractive during
layout optimization.

Figure 8. Shift in optimal mass properties (left) and optimal control surface layout (right), with changes in
the required number of control surfaces.

V. Active Flutter Suppression

Exercises to this point have included only static aeroelastic physics, with control surfaces used for MLA.
In this section, dynamic aeroelastic metrics are included as constraints in the form of flutter margins, with
control surfaces used for AFS. In order to isolate and understand the effects of AFS, control surface-based
MLA is not considered in this section. In reality, the optimal control surface layout will be a compromise
across a wide range of static and dynamic load cases, with oscillatory actuation utilized during AFS super-
imposed upon the quasi-steady actuation utilized during MLA.2 These issues are ignored for the preliminary
case studied here.

The dynamic aeroelastic behavior of the wing is modeled in the time domain, via modal coordinates.20

Mode shapes of the flexible wing are combined and orthogonalized with control surface modes (one Ritz
vector per control surface),21 and the combined vector of modal amplitudes is computed as:


ẋm

ẍm

ẋA

 =

 I 0 0

0 M − q·b2
U2 ·A2 0

0 0 b
U · I


−1

·


0 I 0 · · · 0

−K + q ·A0 −C + q ·A1 q ·A2 · · · q ·An+2

0 b
U · I −γ1 · I · · · 0

...
...

...
. . .

...

0 b
U · I 0 · · · −γn · I

·

xm

ẋm

xA


(5)

where b is the half-mean chord, and M , K, and C are the reduced mass, stiffness, and damping matrices.
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Ai are the generalized aerodynamic functions resulting from the rational function approximation, and γi are
the corresponding lag roots (n total). xm is the vector of modal amplitudes (wing deformation and control
surface rotation), and xA is the vector of aerodynamic states.

Eq. 5 computes open-loop dynamics. Closed-loop dynamics may be computed by augmenting Eq. 5 with
a control input:

ẋASE = A · xASE +B · uASE (6)

where xASE is the state vector from Eq. 5 and A is the matrix from Eq. 5. uASE is a vector of input control
surface rotations (one per control surface), analogous to the quasi-steady θi variables. B is a matrix that
converts those commanded rotations into generalized modal forces. Similar to the quasi-steady Eq. 1, the
dynamic effectiveness of each control surface must be tied to its layout variable xi:

B = B ·


(x1)p

(x2)p

. . .

(xI)
p

 (7)

where B is the baseline conversion matrix computed with each xi set to one. As before, values of p greater
than one will implicitly push each xi to the extremes of zero or one12 during the AFS optimization process.

The controller used here is a simple Linear Quadratic Regulator (LQR), with full-state feedback assumed
of the form:

uASE = −KLQR · xASE (8)

The feedback matrix is found which minimizes the performance index:22

J =
1

2
·
∫ ∞
0

(xTASE ·Q · xASE + uTASE ·R · uASE) · dt (9)

where Q is the state weighting matrix, and R is the control weighting matrix. For this work, Q is computed
from a unit-weighting of the displacement of eight finite element nodes uniformly distributed throughout the
wing: two chordwise and four spanwise. R is set as a diagonal matrix, with each member fixed at 250.

Eigenvalues of either the open-loop Eq. 5 or the closed-loop Eq. 6 are given by s = g + i · ω. For a
given Mach number, these eigenvalues may be tracked across a range of matched point equivalent air speeds.
Speeds at which a given eigenvalue crosses into the right-half plane (g = 0) are flutter points.

A. AFS Optimization Definition

The optimization details in this section closely resemble those in Table 2. The objective function is again the
sum of the structural wingbox weight and the control surface actuator weight (mi). Static aeroelastic stress
(KSσ) and buckling (KSµ) constraints are attached to load cases 2, 4, and 5 in Table 1; closed-loop MLA
cases 1 and 3 are ignored here, as previously noted. The KSt/ts , KSAR, and δx constraints are all enforced
as before. Three additional constraints are imposed: an open-loop flutter constraint, a closed-loop flutter
constraint, and control cost constraint stipulating that J from Eq. 9 must be less than some threshold.

A flutter constraint is formulated by imposing upper limits on the damping g of each mode, at all
equivalent air speeds (UEAS) of interest.23 Specifically, each damping value is constrained to lie beneath the
piecewise polynomial:

g ≤

0 0 ≤ UEAS ≤ U∗

c · (UEAS − U∗)2 UEAS > U∗
(10)

The minimum allowable flutter equivalent air speed is U∗, computed from the desired flutter margin and the
flight envelope (using a 185 m/s dive speed). The quadratic scaling parameter c is set to 500.

Critical UEAS points (local minima) of the inequality in Eq. 10 are computed and lumped together
into a single KS constraint. As above, if this constraint is greater than one, then Eq. 10 is not satisfied,
and the structure does not meet the required flutter margin. A separate KS constraint is utilized for each
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considered Mach number, for both open- and closed-loop dynamics. Analytical flutter derivatives are simply
computed with eigenvalue differentiation techniques19 via a fixed-mode approximation. For the case of a
closed-loop constraint, derivatives of the feedback matrix KLQR and the performance index J are computed
using methods in Ref. 24.

Design variables q include patchwise shell thickness, stiffener thickness, and stiffener height, as well as
the topological/layout variables xi. Quasi-steady control surface rotations, θi, are not included here, as MLA
is not considered in this section. A final design variable is ULQR,1 the flight condition at which the feedback
matrix KLQR is computed in Eq. 9. In addition to being able to remove control surfaces via xi, ULQR gives
the optimizer a strong influence over the behavior of the controller. Large values of the ULQR control design
point (relative to the open-loop flutter point) will stabilize the system at ULQR, as guaranteed by the LQR
methodology,22 but the control cost, J , will be high. Small values of ULQR may not provide a closed-loop
flutter point measurably better than the open-loop point, but the control cost will be low.

B. AFS Optimization Results

Convergence of the AFS optimization process is shown in stages in Fig. 9. The first stage considers only
static aeroelastic optimization (no flutter), with structural design variables only. The baseline design for
this case is the converged design from stage 1 of Fig. 3. The only difference between these two design
formulations is the removal of MLA load cases 1 and 3: this allows the optimizer to feasibly remove a large
amount of structural material, with the structural mass dropping from 19,189 kg to 13,870 kg. Although
optimized without flutter metrics, the open-loop eigenvalue migration behavior of this wing is shown in
Fig. 10. Structural modes (xm from Eq. 5), aerodynamic lag roots (xA), and control surface modes are all
noted in the figure, with control surface frequencies emanating from the specified wind-off value of 35 Hz (as
discussed above, each control surface hinge spring is tuned to obtain this frequency).

Figure 9. Convergence history of the AFS aeroelastic optimization process.

Three flutter mechanisms can be seen in Fig. 10. The second structural mode (a second bending mode
shape) exhibits a “hard” flutter mechanism at a margin of 0.89 (relative to the dive speed), whereas the
third and fourth structural modes (an in-plane bending mode, and a torsional mode, respectively), exhibit
softer hump modes, with margins of 0.76 and 1.04. Clearly the flutter constraints are violated by this wing
structure, which is the goal of the next 2 design stages in Fig. 9. Constraint boundaries are set to margins
of 1.0 for open-loop and 1.2 for closed-loop. As with the MLA load cases in Table 1, the optimizer is forced
to account for cases that do not benefit from AFS (i.e., the open-loop constraint), albeit at a lower factor
of safety: this prevents overly-large mass reductions, and injects a level of risk-reduction into the design
process.

The second phase of Fig. 9 enforces the 1.0 open-loop flutter margin constraint only: structural mass
increases from 13,870 to 14,358 kg, in order to satisfy this constraint. The third phase adds the 1.2 closed-
loop flutter margin constraint to the design process, as well as the ULQR design variable. During this design
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Figure 10. Eigenvalue migration behavior for the wing optimized without flutter constraints.

phase, the structural mass is essentially unchanged. The optimizer can meet this closed-loop constraint
without needing to passively stiffen the wing, as the LQR controller is capable of stabilizing the system on
its own. Eigenvalue migration of the open- and closed-loop dynamics for this case are shown in Fig. 11. The
constraint boundaries computed with Eq. 10 are shown in the figure as well. Both constraint boundaries
are highly-active, with two modes interacting with the constraint boundary in the open-loop case, and three
modes in the closed-loop case.

Figure 11. Open- and closed-loop eigenvalue migration (real part); constraint boundary indicated by thick
dashed line.

The fourth and fifth phases of Fig. 9 add the control surface layout design variables (xi, which impact
the AFS problem through Eq. 7), and the δx constraint, respectively. Only during these final stages does the
actuator mass change, dropping from 2,262 kg to 232 kg, retaining only three control surfaces near midspan
(seen in Fig. 12). As with the previous MLA control surface layouts, the low effectiveness of the outboard
control surfaces makes these actuators unattractive choices for AFS as well. Structural mass increases only
slightly during this stage, from 14,358 to 14,377 kg. This suggests, as before, that the LQR controller is
capable, even with only 3 control surfaces, of meeting the closed-loop flutter constraint without requiring
any passive stiffening from the structural design variables.

The previous MLA results of Fig. 8 considered the change in optimal control surface layout when the
number of actuators was gradually forced to zero. This would not be an interesting exercise here, given the
simple AFS layout. It is of interest, however, to understand the role of a control cost constraint on J (Eq. 9).
The bar heights in Fig. 12 indicate the contribution of each actuator to the uTASE ·R ·uASE portion of Eq. 9
(the xTASE ·Q ·xASE portion is not shown). Quantified control cost and design mass for each case in Fig. 12
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is shown in Table 3. For the left two plots in Fig. 12, the case where all actuators are used for AFS has
a J value of 41, whereas the case with only 3 actuators has a J value of 2,380. Clearly, the optimizer is
able to remove most of the control surfaces and still satisfy the closed-loop flutter constraint, but only at
the expense of having an excessive control cost-per-actuator. This can also be inferred from Fig. 13, which
show open- and closed-loop flutter mode shapes for the “hard” flutter mechanism of the second bending
mode. Control surface deflections for the optimal layout (three actuators) are far larger, relative to the wing
vibration, than seen in the case where all 20 actuators are used for AFS.

Figure 12. Actuator control cost distribution during AFS.

The remaining two designs in Fig. 12 and Table 3 enforce an upper bound on the control cost J , of 100
and 50, respectively. These constraints force the optimizer to use more actuators, with a lower cost-per-
actuator. The design with a J constraint of 50 favors control surfaces at the root over using those near
midspan. The reason for this is unclear, given that the control surfaces are not being used for static trim
(as seen in the MLA results), but may be due to a disinclination to use control surfaces near the anti-node
line of the flutter mode shape seen in Fig. 13.

Table 3. Summary of AFS designs corresponding to Fig. 12.

Number of Actuators M Mstructure Mactuator Cost Constraint? Cost

20 16,592 kg 14,358 kg 2,262 kg no 41

3 14,610 kg 14,377 kg 232 kg no 2,380

8 14,761 kg 14,176 kg 585 kg yes 100

17 16,341 kg 14,479 kg 1,862 kg yes 50

It can also be seen from Table 3 that, while both actuator mass and the summed actuator-structural mass
(the objective function) monotonically increase as the cost constraint is made harder to satisfy, structural
mass does not. Furthermore, the changes in structural mass are small. As noted above, a meaningful
increase in structural mass would only occur in a situation where the LQR feedback control, designed by the
optimizer, is unable to entirely meet the closed-loop control margin on its own. The optimizer would then
be forced to utilize the structural design variables to stiffen the wing to help meet this constraint, which
would make the wingbox heavier. For the current configuration, such a situation would likely only occur
under a hard-to-satisfy control cost constraint on J , and an additional constraint limiting the total number
of actuators (such as done in Fig. 8). Alternatively, increasing the value of R in Eq. 9, which would increase
the role of control surface motion in J ,22 may also force the optimizer to passively stiffen the wing rather
than increase the number of actuators, when faced with a constraint on control cost.

VI. Conclusions

This work has considered aeroservoelastic optimization of the CRM wingbox via structural sizing design
variables, control surface actuation/scheduling design variables, and control surface layout/topology design
variables. Key findings are as follows:
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• In all cases studied, the SIMP-based penalty on intermediate xi variables is largely successful, push-
ing each of these variables to the desired extremes of zero or one (i.e., each control surface is fully
removed or fully retained) as the aeroelastic optimization process converges. This successfully allows
for gradient-based optimization of these layout design variables alongside a large number of structural
sizing variables.

• For MLA, the basic mechanism exploited by the optimizer is to reduce bending moment with outboard
control surfaces, but use inboard control surfaces to help maintain longitudinal trim. When allowed to
remove control surfaces during layout design, the optimizer retains only those which are most important
to this overall trimming mechanism. Control surfaces at the extreme wingtip are removed despite their
large moment arm; low effectiveness is observed here due to the torsional flexibility of the wing.

• There is a conflict between actuator/control surface mass and structural mass during MLA. Decreasing
actuator mass (by removing control surfaces) will limit the ability of the actuators to alleviate maneuver
loads, thus prompting the optimizer to stiffen the wing, and increase its mass. This trade-off is relatively
mild until the optimizer is forced to use less than 3 control surfaces. This destroys the aforementioned
inboard-outboard trim mechanism, and the optimizer must passively stiffen the wing to clear the
maneuver load cases, prompting large increases in structural weight.

• During AFS, the LQR controller is fully capable of meeting closed-loop flutter constraints without
requiring the optimizer to passively stiffen the wing (increasing structural weight). When allowed to
remove control surfaces during layout design, the optimizer is similarly capable of removing most of
the actuators without a structural weight penalty. The resulting control cost (performance index) is
very high, however.

• Adding a control cost constraint to the optimal AFS layout forces the optimizer to add more control
surfaces, in order to spatially-distribute the cost burden. It is speculated that shifting the Q and R
definitions in the LQR setup (Eq. 9) toward a situation with greater penalties on input actuation, may
force the optimizer to retain fewer control surfaces and passively stiffen the wing, in order to meet a
hard-to-satisfy cost constraint.

Figure 13. Open-loop flutter mode shape (left) and closed-loop flutter mode shapes for the design with a full
bank of control surfaces (center), and the design with the optimal control surface layout (right).
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